Какая из перечисленных функций является б.м.ф. при x→ 0

α(x)=3x + 1
α(x)=3x
α(x)=3
α(x)=1/3x

По определению (Коши), lim f(x) = A (x → a), если

∀Ɛ>0Ǝδ(Ɛ)>0: ∀x ≠ a|x-a| < Ɛ ⇨ |f(x) - A| < δ
∀Ɛ>0Ǝδ(Ɛ)>0: ∀x ≠ a|x-a| < δ ⇨ |f(x) - a| < Ɛ
ƎƐ>0∀δ(Ɛ)>0: Ǝx ≠ a|x-a| < δ ⇨ |f(x) - A| > Ɛ
ƎƐ>0∀δ(Ɛ)>0: Ǝx ≠ a|x-a| < Ɛ ⇨ |f(x) - A| > δ

Указать область определения функции y = √(x^3-1)

(-∞,+∞)
[1,+∞]
(-∞,1] ∪ [1,+∞)
(1,+∞)

По определению (Коши), lim f(x) = -2 (x → -3), если ∀Ɛ>0Ǝδ(Ɛ)>0: ∀x ≠ -3

|x-3| < δ ⇨ |f(x) - 2| < Ɛ
|x+3| < δ ⇨ |f(x) - 2| < Ɛ
|x+3| < δ ⇨ |f(x) + 2| < Ɛ
|x-3| < δ ⇨ |f(x) + 2| < Ɛ

По определению, lim f(x) (x→-∞) = A, если

∀ Ɛ > 0 Ǝ N > 0 : |x| > N ⇨ |f(x) - A| < Ɛ
∀ Ɛ > 0 Ǝ N > 0 : |x| > N ⇨ |f(x) - A| > Ɛ
∀ Ɛ > 0 Ǝ N > 0 : x < -N ⇨ |f(x) - A| < Ɛ
∀ Ɛ > 0 Ǝ N > 0 : x > N ⇨ |f(x) - A| < Ɛ

По определению (Коши), lim f(x) = 5 (x → 1), если ∀Ɛ>0Ǝδ(Ɛ)>0: ∀x ≠ 1

|x-1| < δ ⇨ |f(x) - 5| < Ɛ
|x+1| < δ ⇨ |f(x) - 5| < Ɛ
|x-1| < δ ⇨ |f(x) + 5| < Ɛ
|x+1| < δ ⇨ |f(x) - 5| < Ɛ

Указать область определения функции y = 1/√(x^3 - 1)

(-∞,+∞)
[1,+∞]
(-∞,1] ∪ [1,+∞)
(1,+∞)

Предел функции f(x) = sin x на бесконечности

не существует
равен 1
равен -1
равен 0

Если f(x) ≤ φ(x) для ∀ x ∊ U(a) и Ǝ lim f(x)(x→a) = A, lim φ(x)(x→a) = B, то

A ≥ B
A ≤ B
A = B

RSS-материал RSS-материал

Не нашли ответ на свой вопрос? Задайте его на нашем форуме.